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TOMÁS IBARLUCÍA and JULIEN MELLERAY
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Abstract. We study full groups of minimal actions of countable groups by
homeomorphisms on a Cantor space X , showing that these groups do not admit a
compatible Polish group topology and, in the case of Z-actions, are coanalytic non-Borel
inside Homeo(X). We point out that the full group of a minimal homeomorphism is
topologically simple. We also study some properties of the closure of the full group of
a minimal homeomorphism inside Homeo(X).

1. Introduction
When studying a mathematical structure, one is often led to consider the properties of its
automorphism group, and then it is tempting to ask to what extent the group characterizes
the structure. A particularly striking example is provided by a theorem of Dye [D1, D2]
in ergodic theory: assume that two countable groups 0, 1 act on the unit interval [0, 1] by
measure-preserving automorphisms, without any non-trivial invariant sets (i.e. the actions
are ergodic), and consider the groups [0] ([1]) made up of all measurable bijections that
map each 0-orbit (1-orbit) onto itself. Then the groups [0] and [1] are isomorphic if,
and only if, there exists a measure-preserving bijection of [0, 1] which maps 0-orbits onto
1-orbits. One then says that the relations are orbit equivalent; [0] is called the full group
of the action. Using this language, Dye’s theorem says that the full group of an ergodic
action of a countable group on a standard probability space completely remembers the
associated equivalence relation up to orbit equivalence.

This result was the motivation for an intensive study of full groups in ergodic theory,
for which we point to [K2] as a general reference. More recently, it came to light,
initially via the work of Giordano, Putnam, and Skau, that a similar phenomenon occurs
in topological dynamics. In that context, one still considers actions of countable groups,
replacing probability-measure-preserving actions with actions by homeomorphisms of a
Cantor space. The two settings are related: for instance, when 0 is a countable group, one
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could consider the Bernoulli shift action of 0 on {0, 1}0 as a measure-preserving action
(say, for the ( 1

2 ,
1
2 ) Bernoulli measure) or as an action by homeomorphisms. As in the

measure-theoretic setting, one can define the full group of an action of a countable group
0 on a Cantor space X : this time, it is made up of all homeomorphisms of X which map
0-orbits onto themselves. The counterpart of ergodicity here is minimality, that is, the
assumption that all the orbits of the action are dense; the analog of Dye’s theorem for
minimal group actions was proved by Giordano, Putnam and Skau [GPS2].

The measure-theoretic and topological settings may appear, at first glance, to be very
similar. However, there are deep differences; for instance, all ergodic group actions of
countable amenable groups are orbit equivalent (Connes, Feldman and Weiss [CFW])
while there exists a continuum of pairwise non-orbit equivalent actions of Z by minimal
homeomorphisms of a Cantor space. Still, it is interesting to investigate properties of
full groups in topological dynamics, which has been done by several authors over the last
twenty years or so.

In both contexts discussed above, it is natural to consider the full group of an action as a
topological group, the topology being induced by the topology of the ambient Polish group
(measure-preserving bijections of [0, 1] in one case, homeomorphisms of the Cantor space
in the other). The usefulness of this approach is limited, however, by the fact that the full
group of an ergodic group action, or a minimal group action, is not closed in the ambient
group; in the first case the full group is dense, in the second it seems that the closure is
currently only understood for actions of Zd .

It then comes as a blessing that, in the measure-theoretic context, one can endow
the full group with a stronger topology which turns it into a Polish group: the uniform
topology, induced by the distance given by d(g, h)= µ({x : g(x) 6= h(x)}). This paper
grew out of the following question: can one do the same thing in the topological
context? It is interesting to note that, shortly after the publication of [GPS2], Bezuglyi
and Kwiatkowski [BK] introduced an analog of the uniform topology in the context of
topological dynamics, although this is far from being as nice as the uniform topology of
ergodic theory. This provides further motivation for trying to understand whether a nice
group topology exists at all.

THEOREM. Let 0 be a countable group acting minimally by homeomorphisms on a
Cantor space X. Then any Hausdorff, Baire group topology on [0] must extend the
topology of pointwise convergence for the discrete topology on X. Consequently, there
is no second countable, Hausdorff, Baire group topology on [0].

This is bad news, but certainly not surprising—if a Polish group topology existed for
that group, it would have been considered a long time ago. In the same spirit, one can
then wonder about the complexity of full groups inside the ambient automorphism group;
in ergodic theory, full groups are always fairly tame, in the sense that they can be written
as countable intersections of countable unions of closed sets [W]. Yet again, the situation
turns out to be more dire in topological dynamics.

THEOREM. The full group of a minimal homeomorphism of a Cantor space X is a
coanalytic non-Borel subset of Homeo(X).
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This led us to study the closure of a full group inside the homeomorphism group; this
is a Polish group, and is also a complete invariant for orbit equivalence if one is willing to
restrict one’s attention to actions of Z, which we do in the final sections of this paper. It
follows from a theorem of Glasner and Weiss [GW] that the closure of the full group of a
minimal homeomorphism ϕ coincides with the group of homeomorphisms which preserve
all ϕ-invariant measures. Using work by Bezuglyi and Medynets, and by Grigorchuk and
Medynets, we obtain the following result†.

THEOREM. The closure of the full group of a minimal homeomorphism of the Cantor
space is topologically simple (hence, the full group itself is also topologically simple).

It is an open problem whether the full group of a minimal homeomorphism is simple.
In the case of uniquely ergodic homeomorphisms, we also provide a criterion for the

existence of dense conjugacy classes in the closure of the full group (in terms of the values
taken by the unique invariant measure on clopen sets), and use a Fraı̈ssé theoretic approach
to recover a result of Akin which describes a class of uniquely ergodic homeomorphisms
with the property that the closure of their full group admits a comeager conjugacy class.

2. Background and terminology
We now go over some background material and discuss in more detail some facts that were
mentioned briefly in the introduction.

Recall that a Cantor space is a non-empty, zero-dimensional, perfect compact
metrizable space; any two Cantor spaces are homeomorphic. Given a Cantor space X ,
we denote by Clop(X) the Boolean algebra of all clopen subsets of X , and by Homeo(X)
the group of homeomorphisms of X . This group can be endowed with the topology whose
basic open sets are of the form

{g ∈ Homeo(X) : ∀i ∈ {1, . . . , n} g(Ui )= Vi },

where n is an integer and Ui , Vi are clopen subsets of X . This turns Homeo(X) into a
topological group, namely, the group operations (g, h) 7→ gh and g 7→ g−1 are continuous
with respect to this topology.

Definition 2.1. A Polish group is a topological group whose topology is induced by a
complete, separable metric.

Picking a compatible distance d on X , one can check that the topology defined above
on Homeo(X) is a Polish group topology, a compatible complete distance being given by

d(g, h)=max
x∈X

d(g(x), h(x))+max
y∈X

d(g−1(y), h−1(y)).

It might be a little surprising at first that the two topologies we defined coincide. Actually,
this is a hint of a more general phenomenon: the unique second countable group topologies
on Homeo(X) are the coarse topology and the Polish group topology we defined above
(this follows from results of [A2, G, RS]).

† We originally proved this only for uniquely ergodic homeomorphisms; we thank K. Medynets for explaining
how to make the argument work in general.
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Polish groups form a fairly general class of groups, yet the combination of separability
and the use of Baire category methods makes them relatively tame. The fact that the Baire
category theorem holds in Polish groups is particularly important; we recall that, whenever
G is a topological group for which the Baire category theorem holds, H is a separable
topological group and ϕ : G→ H is a Borel homomorphism, then ϕ must actually be
continuous (see, for example, [K1, Theorem 9.10]).

Definition 2.2. Let 0 be a countable group acting by homeomorphisms on a Cantor space
X . We denote by R0 the associated equivalence relation and define its full group as the
group of all homeomorphisms of X which preserve each 0-orbit; in symbols,

[R0] = {g ∈ Homeo(X) : ∀x ∈ X∃γ ∈ 0g(x)= γ · x}.

As is the case in ergodic theory, the full group of an action of a countable group by
homeomorphisms of a Cantor space X completely remembers the associated equivalence
relation, a fact made precise by the following definition and theorem.

Definition 2.3. Let 01, 02 be two countable groups acting by homeomorphisms on a
Cantor space X , and let R01 , R02 be the associated equivalence relations. We say that
R01 and R02 are orbit equivalent if there is a homeomorphism g of X such that

for all x, y ∈ X (x R01 y)⇔ (g(x)R02 g(y)).

THEOREM 2.4. [GPS2, M2] Let 01, 02 be countable groups acting by homeomorphisms
on a Cantor space X; assume that all orbits for both actions have cardinality at least
3, and for any non-empty U ∈ Clop(X) and i = 1, 2 there exists x ∈U such that 0i · x
intersects U in at least two points.

Denote by R01 and R02 the associated equivalence relations, and suppose that there
exists an isomorphism 8 from [R01 ] to [R02 ]. Then there must exist g ∈ Homeo(X) such
that 8(h)= ghg−1 for all h ∈ [R01 ].

Consequently, [R01 ] and [R01 ] are isomorphic if, and only if, R01 and R02 are orbit
equivalent.

The above result was first proved by Giordano et al [GPS2] for minimal actions, which
we define now, and then extended by Medynets [M2].

Definition 2.5. Let 0 be a countable group acting by homeomorphisms on a Cantor space.
We say that the action is minimal if every point has a dense orbit.

Minimal actions have been particularly well studied for 0 = Z. In that case the action
is simply induced by one homeomorphism ϕ; accordingly, we will use the notation [ϕ] to
denote the full group of the associated equivalence relation. Similarly, when the Z-action
associated to a homeomorphism ϕ is minimal we simply say that ϕ is minimal. In the
case of minimal actions of Z, a particular subgroup plays an important role and is well
understood, mainly thanks to work of Matui.

Definition 2.6. Let ϕ be a homeomorphism of a Cantor space X . Its topological full group
[[ϕ]] is the set of elements g ∈ Homeo(X) for which there is a finite clopen partition
U1, . . . ,Un of X such that, on each Ui , g coincides with some power of ϕ.
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The topological full group [[ϕ]] is a countable subgroup of [ϕ]. Note that, if all orbits
of ϕ are infinite, then for any element g in [ϕ] there exists a unique nx ∈ Z such that
g(x)= ϕnx (x); the group [[ϕ]] is simply made up of all g for which the associated cocycle
x 7→ nx is continuous. Another equivalent (though apparently weaker) definition is that
[[ϕ]] is exactly the set of elements of [ϕ] for which the map x 7→ nx has a finite range.
Indeed, each set of the form {x ∈ X : g(x)= ϕn(x)} is closed, and these sets cover X if g
belongs to [ϕ], so if there are only finitely many non-empty such sets then they are clopen
and g belongs to [[ϕ]].

Though it will not be featured prominently in this paper, the topological full group
plays an important part in the study of minimal homeomorphisms; it appears naturally
as a subgroup of the C∗-algebra associated to (X, ϕ) (see, for instance, [GPS1, BT]), and
topological full groups of two minimal homeomorphisms ϕ1, ϕ2 are isomorphic if and only
if the associated systems are flip-conjugate, that is, ϕ1 is conjugate to ϕ2 or ϕ−1

2 (Boyle
and Tomiyama [BT]). Recently, Juschenko and Monod [JM] proved that topological
full groups of minimal homeomorphisms of Cantor spaces are amenable, a result which
had been conjectured by Grigorchuk and Medynets [GM]; in conjunction with work of
Matui [M1], this provided the first example of simple, finitely generated, infinite amenable
groups. For further information about these groups, we refer to de Cornulier’s thorough
survey paper [dC].

The next result elucidates the action of the full group of a minimal homeomorphism on
the algebra of clopen sets. Before stating it we set some notation.

Notation. Let X be a Cantor space and ϕ a homeomorphism of X . A Borel probability
measure µ on X is ϕ-invariant if µ(A)= µ(ϕ−1(A)) for any Borel subset A ⊆ X (if this
equality holds for clopen sets then it must hold for all Borel sets). Given a homeomorphism
ϕ, we denote by Mϕ its set of invariant probability measures, which is a non-empty
compact, convex subset of the space of all probability measures on X .

THEOREM 2.5. [GW, Lemma 2.5 and Proposition 2.6] Let ϕ be a minimal homeo-
morphism of a Cantor space X, and A, B be clopen subsets of X. Then the following
facts hold:
• if µ(A) < µ(B) for all µ ∈Mϕ then there exists g ∈ [[ϕ]] such that g(A)⊂ B;
• (∀µ ∈Mϕ µ(A)= µ(B))⇔ (∃g ∈ [ϕ]g(A)= B).

Remark 1. In both cases, one can add the assumption that g2
= 1 to the right-hand

statement. It is useful that in the first statement above, one can find g in the topological
full group and not merely in the full group; this is not always possible when it comes to
the second statement.

3. Topologies on full groups
Throughout this section we let 0 denote a countable group acting on a Cantor space X , and
R denote the associated equivalence relation, that is, x Ry if and only if x = γ · y for some
γ ∈ 0. We make the following assumption on the action of 0: given any non-empty open
U ⊆ X , there exist x 6= y ∈U and γ ∈ 0 such that γ · x = y. Equivalently, there exists no
non-empty open subset U ⊆ X such that the restriction of R to U is trivial.
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Note that this assumption implies that, given any non-empty open U , there exist g ∈ [R]
and a clopen V such that g2

= 1, g(V ) and V are non-empty disjoint clopen subsets of
U and g coincides with the identity outside of V ∪ g(V ). We now point out a further
consequence.

LEMMA 3.1. The set �= {x ∈ X : x is an accumulation point of 0 · x} is dense Gδ in X.

Proof. Fix a compatible metric d on X . Recall that x is an accumulation point of 0 · x if,
and only if, the following condition holds:

for all ε > 0 there exists γ ∈ 0(γ · x 6= x and d(γ · x, x) < ε).

The condition in parentheses is open, showing that � is indeed Gδ . By the Baire category
theorem, to check that � is dense we only need to prove that for any ε > 0 the set {x :
∃γ ∈ 0 γ · x 6= x and d(γ · x, x) < ε} is dense, and this follows immediately from our
assumption on the action. �

For the next two lemmas and proposition, we let τ denote a group topology on [R]
which is Hausdorff and such that ([R], τ ) is a Baire space.

LEMMA 3.2. For any non-empty clopen subset U of X, the set 1U = {g ∈ [R] : g�U =

id�U } is τ -closed.

Proof. We claim that g ∈ [R] coincides with the identity on U if, and only if, gh = hg for
any h ∈ [R] whose support is contained in U. Each set {g : gh = hg} is closed since τ is
a Hausdorff group topology, hence if we prove this claim we can conclude that 1U is an
intersection of closed subsets of [R], so 1U is closed.

Now to the proof of the claim. One inclusion is obvious. To see the converse, assume
that there exists x ∈U such that x 6= g(x). This gives us a clopen subset W of U such
that W and g(W ) are disjoint. By assumption, there exist a clopen subset V of W and an
involution h ∈ [R] with support contained in W (hence in U ) and such that V and h(V )
are disjoint subsets of W . Then hg(V )= g(V ) is disjoint from gh(V ), showing that g and
h do not commute. �

LEMMA 3.3. For any clopen subset U of X, the set 6U = {g ∈ [R] : g(U )=U } is
τ -closed.

Proof. We may assume that U is non-empty; also, since τ is a group topology and (g(U )=
U )⇔ (g(U )⊆U and g−1(U )⊆U ), we only need to show that {g ∈ [R] : g(U )⊆U }
=6′U is closed in [R]. To that end, one can use the same strategy as above: this time,
we claim that g ∈6′U if and only if, for any h which coincides with the identity on U ,
g−1hg coincides with the identity on U . Proving this will show that 6′U is an intersection
of closed sets (by Lemma 3.2), which gives the result.

Again, one inclusion is obvious. To see the converse, we assume that g(U ) is not
contained in U . Then there exists a non-empty clopen subset W of U such that g(W ) ∩

U = ∅. One can find a non-trivial involution h with support in g(W ). This gives us a
non-empty clopen V ⊆U such that hg(V ) and g(V ) are disjoint, hence g−1hg does not
coincide with the identity on U . �
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PROPOSITION 3.4. The set {g ∈ [R] : g(x)= x} is τ -clopen for all x ∈ X.

Proof. The result of Lemma 3.3 shows that the natural inclusion map from ([R], τ ) to
Homeo(X) is Borel. Since τ is assumed to be Baire (this is the first time we are using
that assumption) and Homeo(X) is separable, the inclusion map must be continuous,
showing that each set {g ∈ [R] : g(x)= x} is τ -closed. Now fix x ∈ X and let H denote
the permutation group of the countable set 0 · x , endowed with its permutation group
topology, which is the topology of pointwise convergence on 0 · x considered as a discrete
set.

Since {g ∈ [R] : g(γ1 · x)= γ2 · x} is closed for all γ1, γ2 ∈ 0, we see that the natural
homomorphism from ([R], τ ) to H (given by g 7→ (γ · x 7→ g(γ · x)) is Borel. Thus this
homomorphism must be continuous, and {g ∈ [R] : g(x)= x} is τ -clopen. �

Let us sum up what we have just proved.

THEOREM 3.5. Let 0 be a countable group acting by homeomorphisms on a Cantor
space X. Assume that the restriction of the associated equivalence relation to a non-empty
open subset of X is never trivial.

Then any Hausdorff, Baire group topology on [R]must extend the topology of pointwise
convergence for the discrete topology on X. Consequently, there is no second countable,
Hausdorff, Baire group topology on [R].

Proof. The first statement corresponds exactly to the result of Proposition 3.4. To see why
the second statement holds, let us proceed by contradiction and assume that there exists a
second countable, Hausdorff, Baire group topology on [R].

We recall the result of Lemma 3.1: the set � made up of all x such that x is an
accumulation point of 0 · x is dense Gδ in X , and thus, in particular, uncountable.
Assuming τ is second countable, the Lindelöf property implies that there exists a sequence
(xi )i<ω of elements of � such that

{g ∈ [R] : ∃x ∈� g(x)= x} =
⋃
i<ω

{g ∈ [R] : g(xi )= xi }.

However, we claim that, for any countable subset {xi }i<ω of � and any x ∈� \ {xi }i<ω,
there exists g ∈ [R] such that g(x)= x and g(xi ) 6= xi for all i ; granting this, we obtain
the desired contradiction.

To conclude the proof, we briefly explain why the claim holds. Using the fact that each
xi is an accumulation point of 0 · xi , one can construct inductively a sequence of clopen
sets Uj and elements γ j of 0 with the following properties:
• for all i , xi ∈

⋃
j≤i (Uj ∪ γ jUj );

• for all j , the diameter of Uj ∪ γ jUj is less than 2− j , and γ jUj ∩Uj = ∅;
• for all j 6= k, (Uj ∪ γ jUj ) ∩ (Uk ∪ γkUk)= ∅;
• for all j x 6∈ γ jUj ∪Uj .

One can then define a bijection g of X by setting

g(y)=


γ j (y) if y ∈Uj for some j,

γ−1
j (y) if y ∈ γ j (Uj ) for some j,

y otherwise.
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The fact that the diameter of Uj ∪ γ jUj vanishes ensures that g is continuous, so g belongs
to [R] and satisfies g(x)= x , g(xi ) 6= xi for all i . �

Remark 2. It is not clear whether the Hausdorfness assumption is really needed: if [R] is
a simple group, then a non-Hausdorff group topology is necessarily the coarse topology;
indeed, the elements that cannot be separated from 1 by an open subset form a normal
subgroup of [R]. So, if [R] is simple, then the above result says that the unique Baire,
second countable group topology on [R] is the coarse topology. However, it is an open
question whether [R] is simple, even in the case where R is induced by a minimal action
of Z.

The techniques of this section are close to those employed by Rosendal in [R], but
it seems that his results do not cover the case studied here. It was pointed out by the
referee that the subgroups which appear in Lemma 3.2 were introduced by Dye [D2] in the
measurable context, and that he called them local subgroups.

4. Borel complexity of the full group of a minimal homeomorphism
The following question was suggested to us by T. Tsankov: what is the complexity (in the
sense of descriptive set theory) of the full group of an equivalence relation induced by a
minimal action of a countable group on the Cantor space? We answer that question for
0 = Z. Below we use standard results and notations of descriptive set theory, borrowed
from Kechris’s book [K1].

In particular, we recall that if A is a countable set, then a tree on A is a subset T of
the set A<ω of finite sequences of elements of A, closed under taking initial segments
(see [K1, §2] for information on descriptive-set-theoretic trees and a detailed exposition
of related notions). The set T of trees on A can be endowed with a topology that turns it
into a Cantor space, by setting as basic open sets all sets of the form

{T ∈ T : ∀s ∈ S s ∈ T and ∀s′ ∈ S′ s′ 6∈ T },

where S and S′ are finite subsets of A<ω.
When s ∈ A<ω and a ∈ A, we denote by s a a the sequence of length length(s)+ 1

obtained by appending a to s.
A tree T is said to be well founded if it has no infinite branches; in this case one can

define inductively the rank of an element s of A<ω by setting

ρT (s)= sup{ρT (s a a)+ 1 : s a a ∈ T }.

In particular, elements not in T and terminal nodes in T all have rank 0; then one defines
the rank ρ(T ) of T as being equal to the supremum of all ρT (s)+ 1 for s ∈ A<ω. When
T is non-empty, this supremum is equal to ρT (∅)+ 1.

Having said all this, we can get down to work, which we do by pointing out the obvious:
whenever 0 is a countable group acting by homeomorphisms on a Cantor space X , the full
group of the associated equivalence relation R is a coanalytic subset of the Polish group
Homeo(X). This is simply due to the fact that each set {(g, x) ∈ Homeo(X)× X : g(x)=
γ · x} is closed, and for all g ∈ Homeo(X) one has

g ∈ [R] ⇔ for all x ∈ X there exists γ ∈ 0 g(x)= γ · x .
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The above line shows that [R] is the coprojection of an Fσ subset of Homeo(X)× X ,
hence is coanalytic.

One might expect that the descriptive complexity of [R] is not that high in the Borel
hierarchy. For instance, in the measure-preserving context, full groups are always Borel
of very low complexity: it is shown in [W] that the full group of an aperiodic, probability-
measure-preserving equivalence relation is a 50

3-complete subset of the group of measure-
preserving automorphisms (i.e. in that case the full group is a countable intersection of
countable unions of closed sets). Perhaps surprisingly, it turns out that full groups of
minimal homeomorphisms are not Borel.

Below, we denote by ϕ a minimal homeomorphism of a Cantor space X and recall that
[ϕ] denotes the full group of the associated equivalence relation. We also denote by T the
space of all trees on Clop(X), endowed with the topology discussed above.

Definition 4.1. To each g ∈ Homeo(X) we associate a tree Tg on Clop(X) as follows: for
any sequence (U0, . . . ,Un) of clopen sets, (U0, . . . ,Un) belongs to Tg if and only if each
Uj is non-empty, U j+1 ⊆U j for all j ∈ {0, . . . , n − 1} and g(x) 6= ϕ± j (x) for all x ∈Uj .

LEMMA 4.2. The map g 7→ Tg is a Borel mapping from Homeo(X) to T . For any g ∈
Homeo(X), g belongs to [ϕ] if, and only if, Tg is well founded.

Proof. We need to prove that for any finite sequence of non-empty clopen subsets
(U0, . . . ,Un) the set {g ∈ Homeo(X) : (U0, . . . ,Un) ∈ Tg} is Borel. For this, it is enough
to show that, for any non-empty clopen subset U of X , the set {g : ∀x ∈U g(x) 6= x} is
Borel. The complement of this set is {g : ∃x ∈U g(x)= x}, which is closed because U is
clopen in X and thus compact: if gn is a sequence of homeomorphisms of X such that for
all n there exists xn ∈U such that gn(xn)= xn , and gn converges to g in Homeo(X), then
up to some extraction we can assume that xn converges to x ∈U ; the distance from g(xn)

to gn(xn) must converge to 0, so gn(xn) converges to g(x), showing that g(x)= x . This
concludes the proof that g 7→ Tg is Borel.

Next we fix g ∈ Homeo(X). We first assume that g does not belong to [ϕ], that is, there
exists x ∈ X such that g(x) 6= ϕn(x) for all n ∈ Z. Then, using the continuity of g and ϕ,
one can build by induction a decreasing sequence of clopen neighborhoods Ui of x such
that, for all i and all y ∈Ui , one has g(y) 6= ϕ±i (y), which yields an infinite branch of Tg .
Conversely, assume that Tg is not well founded and let (Ui )i<ω be an infinite branch of Tg .
Then F =

⋂
i<ω Ui is non-empty, and, for all x ∈ F , g(x) is different from ϕn(x) for all

n ∈ Z, showing that g does not belong to [ϕ]. �

If [ϕ] were Borel, the set Tϕ = {Tg : g ∈ [ϕ]} would be an analytic subset of T , hence
the boundedness principle for coanalytic ranks (see [K1, Theorem 35.23]) would imply the
existence of a countable ordinal α such that the rank of any element of Tϕ is less than α.
We want to prove that this is not the case, so we need to produce elements of [ϕ] such that
the associated tree has arbitrarily large rank. Let us introduce some notation in order to
simplify the work ahead.

Definition 4.3. For any g ∈ [ϕ], we let ρ(g) denote the rank of Tg . For any finite sequence
of clopen sets (U0, . . . ,Un), we let ρg(U0, . . . ,Un) denote the rank of (U0, . . . ,Un)
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with regard to the tree Tg . If α and β are ordinals, we write α ∼ β to express that there are
only finitely many ordinals between them; we write α & β when α ≥ β or α ∼ β.

An encouraging sign that our introduction of ρ is a good way to capture information
about elements of [ϕ] is that the topological full group [[ϕ]] is exactly made up of all
g ∈ Homeo(X) such that ρ(g) < ω.

In order to construct elements of [ϕ] such that the associated tree has arbitrarily large
rank, the following observation will be crucial.

LEMMA 4.4. Let g be an element of [ϕ], and assume that ρ(g)≥ ω. Then for any h ∈ [[ϕ]]
one has ρ(g)∼ ρ(hg).

Since ρ(g)= ρ(g−1), the above lemma also holds true when multiplying on the right
by an element of the topological full group.

Proof. For k < ω, let

T k
g = {(Uk, . . . ,Un) : (U0, . . . ,Un) ∈ Tg for some U0, . . . ,Uk−1}.

If h ∈ [[ϕ]], then for some k < ω and for all x ∈ X there is j such that | j | ≤ k and h(x)=
ϕ j (x). So if g(x) 6= ϕ j (x) for all | j | ≤ n but hg(x)= ϕm(x) for some m, then |m|>
n − k. This implies that T k

g ⊆ Thg . Since ρ(T k
g )≥ ρ(Tg)− k, we get ρ(Thg)≥ ρ(Tg)− k,

and similarly ρ(Tg)= ρ(Th−1hg)≥ ρ(Thg)− k, proving the claim. �

When U is a subset of X and g belongs to [ϕ], we set

n(g,U )=min({|k| : ∃x ∈U g(x)= ϕk(x)}).

LEMMA 4.5. Let α be an infinite ordinal belonging to {ρ(g) : g ∈ [ϕ]}, and N be an
integer. For any non-empty clopen U ⊆ X, there exists h ∈ [ϕ] with support S contained
in U (in particular, h(U )=U), such that ρ(h)& α and n(h, S) > N.

Proof. Pick g ∈ [ϕ] such that ρ(g)= α is infinite and fix a non-empty clopen U ⊆ X and
an integer N . Using compactness of the space of ϕ-invariant probability measures and
the fact that they are all atomless, one can find a non-empty clopen Ũ ⊆U such that
(2N + 2)µ(Ũ ) < µ(U ) for any ϕ-invariant measure µ.

Since ϕ is minimal, there exist i1, . . . , in such that X =
⋃n

j=1 ϕ
i j (Ũ ). For all j ∈

{1, . . . , n}, denote Uj = ϕ
i j (Ũ ), and consider the tree T j defined by

(V0, . . . , Vn) ∈ T j ⇔ (V0, . . . , Vn) ∈ Tg and V0 ⊆Uj .

Denote by ρ j the rank function associated to the well-founded tree T j , and by ρ(T j ) the
rank of T j . For any finite sequence (V0, . . . , Vk) of clopen subsets of X , we have

(∀ j ∈ {1, . . . , n} ρ j (V0 ∩Uj , . . . , Vk ∩Uj )= 0)⇒ ρg(V0, . . . , Vk)= 0.

From this, we see by transfinite induction that ρ(g)=max{ρ(T j ) : j ∈ {1, . . . , n}}, so
there exists j such that ρ(T j )= α. Fix such a j ; any element of [ϕ] coinciding with g on
Uj must have rank larger than α.
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Applying the Glasner–Weiss result recalled as Theorem 2.5, we can find f ∈ [[ϕ]] such
that f (Uj )=W ⊆U . We also have

µ(g(Uj )) < µ

(
U \

N⋃
i=−N

ϕi (W )

)
for any ϕ-invariant µ, so, applying Theorem 2.5 again, we can find k ∈ [[ϕ]] such that
k(g(Uj )) is contained in U and disjoint from

⋃N
i=−N ϕ

i (W ). Now let h be equal to kg f −1

on W , to f g−1k−1 on kg f −1(W ), and to the identity elsewhere. We set S =W ∪ h(W ).
Using the fact that f, k belong to [[ϕ]] and Lemma 4.4, we see that ρ(h)& ρ(g). The
construction ensures that h(W ) is disjoint from

⋃N
i=−N ϕ

i (W ), so n(h, W ) > N ; since h
is an involution, n(h, h(W ))= n(h, W ) is also strictly larger than N . This ensures that
n(h, S) > N and all the desired conditions are satisfied. �

THEOREM 4.6. The full group of a minimal homeomorphism of a Cantor space X is a
coanalytic non-Borel subset of Homeo(X).

Proof. Let ϕ be a minimal homeomorphism of a Cantor space X . We explain how to
produce elements of [ϕ] with arbitrarily large rank. To that end, we fix for the remainder
of the proof a compatible distance on X , an element g of [ϕ] and a countable family (Vi )

of non-empty disjoint clopen subsets of X with the following property: the tree generated
by terminal nodes (U0, . . . ,Un) of Tg such that Un = Vi for some i has rank at least ω.
Note that the value n associated to such a terminal node is determined by i : we must have
g = ϕ±(n+1) on Vi . We note that n = Ni , and our hypothesis is that (Ni ) is unbounded.

We then pick an infinite sequence (Wi )i<ω of non-empty clopen subsets of X such that
the diameter of each Wi is less than 2−i and Wi ⊆ Vi for all i . Now, let gi be any sequence
of elements of [ϕ] of infinite rank; using Lemma 4.5, we can find elements hi of [ϕ]
with support Si contained in Wi and such that ρ(hi )& ρ(gi ). We shall also require that
n(hi , Si ) > 2Ni + 1. We then define h : X→ X by setting

h(x)=

{
ghi (x) if x belongs to some Wi ,

g(x) otherwise.

Note that, since the sets Wi are pairwise disjoint, h is well defined. We next show that
h is continuous. Let (xi ) be a sequence of elements of X converging to some x ∈ X . If
x belongs to Wj for some j then xi ∈Wj for i large enough, and continuity of g and hj

ensures that h(xi ) converges to h(x). So we may assume that x does not belong to ∪Wj ;
in that case h(x)= g(x) and since g is continuous we may also assume that xi belongs to
some Wji for all i . Each Wi is clopen, so we must have ji →+∞, hence the diameter of
Wji converges to 0. Since g is uniformly continuous, the diameter of g(Wji ) also converges
to 0; h(xi ) and g(xi ) both belong to this set, showing that d(g(xi ), h(xi )) converges to 0.
Hence h(xi ) converges to g(x)= h(x), proving that h is continuous. The construction
also ensures that h is bijective, so h is a homeomorphism of X , and h belongs to [ϕ]. The
definition of h and the argument of Lemma 4.4 (using the fact that g = ϕ±(Ni+1) on Wi )
ensure that ρ(h)& ρ(hi ) for all i . If we have ρ(gi )≥ αi for limit ordinals αi , we then
obtain ρ(h)≥ sup αi .
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Now let α be a countable limit ordinal, and f an element of [ϕ] such that ρ( f )≥ α;
we now explain how to produce an element of [ϕ] with rank greater than α + ω, which
will conclude the proof. The element in question, again denoted by h, is obtained by
applying the construction above with gi = f for all i . Let (U0, . . . ,Un), U0 =Un = Vi ,
be a terminal node of Tg so, in particular, g = ϕ±(n+1) on U0, n = Ni . Since n(hi , Si ) >

2n + 1, the only way to have ghi (x)= ϕm(x) for x ∈U0 is with |m|> n, and this says that
(U0, . . . ,Un) belongs to Tghi (and to Th) as well. Once we know this, the argument of
Lemma 4.4 implies that ρh(U0, . . . ,Un)& ρ(hi )≥ α: if (U ′0, . . . ,U ′k) ∈ Thi , U ′0 ⊆Un ,
2n + 1< k, then (U0, . . . ,Un,U ′2n+2, . . . ,U ′k) ∈ Th . We conclude that ρ(h)≥ α + n =
α + Ni . Since this is true for every i , we get ρ(h)≥ α + ω, as expected. �

Remark 3. Given the result we just proved, it seems likely that the full group of an
equivalence relation induced by a minimal action of a countable group 0 on a Cantor
space is never Borel. The above argument may be adapted in large part, but it is not clear
to the authors how one can modify Lemma 4.5 in a context where Theorem 2.5 does not
hold.

One can nevertheless note that the above result extends to relations induced by actions
of Zd for all integers d, though this extension of the result is not really meaningful, indeed
it is trivial once one knows that full groups associated to minimal Zd -actions are the same
as full groups associated to minimal Z-actions, a powerful result proved in [GMPS].

5. Closures of full groups
We saw above that there does not exist a Hausdorff, Baire group topology on the full group
of a minimal homeomorphism ϕ of a Cantor space X . This precludes the usage of Baire
category methods; however, the same cannot be said of the closure of [ϕ], which is of
course a Polish group since it is a closed subgroup of Homeo(X) (and the arguments of
§3 show that the topology induced by that of Homeo(X) is the unique Polish topology
on the closure of [ϕ] which is compatible with the group operations). As pointed out in
[GPS2], the closure of [ϕ] is easy to describe thanks to Theorem 2.5: letting Mϕ denote
the (compact, convex) set of all ϕ-invariant probability measures, we have

[ϕ] = {g ∈ Homeo(X) : ∀µ ∈Mϕ g∗µ= µ}.

Notation. Below we denote the closure of the full group of ϕ in Homeo(X) by Gϕ .
This group is relevant when studying topological orbit equivalence of minimal

homeomorphisms, because of a theorem of Giordano, Putnam, and Skau which implies
the following result.

PROPOSITION 5.1. Let ϕ1, ϕ2 be two minimal homeomorphisms of a Cantor space X;
assume that Gϕ1 and Gϕ2 are isomorphic (as abstract groups). Then ϕ1 and ϕ2 are orbit
equivalent.

Proof. Assume that 8 : Gϕ1 → Gϕ2 is a group isomorphism. First, the usual reconstruc-
tion techniques (see, for example, [M2]) show that there exists a homeomorphism h ∈
Homeo(X) such that 8(g)= hgh−1 for all g ∈ Gϕ1 .
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So we have that

for all g ∈ Homeo(X), g ∈ Gϕ1 ⇔ hgh−1
∈ Gϕ2 .

Since Mϕi is equal to the set of measures which are invariant under translation by elements
of Gϕi (for i = 1, 2), this means that

for all µ, µ ∈Mϕ1 ⇔ h∗µ ∈Mϕ2 .

Then [GPS1, Theorem 2.2(iii)] implies that ϕ1 and ϕ2 are orbit equivalent. �

Of course, the converse of the above statement is true: if ϕ1 and ϕ2 are orbit equivalent,
then their full groups are conjugated inside Homeo(X), so the closures of the full groups
are also conjugated. However, the statement above is only valid a priori for actions of Z:
while it is true that for any minimal actions of countable groups an isomorphism between
the closures of the respective full groups must be implemented by a homeomorphism of
X , there is no reason why this homeomorphism would be sufficient to prove that the full
groups themselves are isomorphic. Indeed, using ideas from ergodic theory, one can see
that there are plenty of examples of actions of countable groups 01, 02 on a Cantor space
X such that [R01 ] = [R02 ], yet the two associated relations are not orbit equivalent. The
example below was explained to us by D. Gaboriau.

PROPOSITION 5.2. There exist an action of Z and an action of the free group F3 on three
generators on a Cantor space X, such that the closures of the full groups of the two actions
coincide, yet the relations are not orbit equivalent.

Proof. Let Z act on the Cantor space {0, 1}ω via the usual odometer map. Consider the
free group F2 on two generators acting by the Bernoulli shift on {0, 1}F2 ; using a bijection
between ω and F2, one can see this as an action of F2 on {0, 1}ω = X . Let F3 = F2 ∗ Z act
on X , where the action of F2 is the Bernoulli shift and the action of Z is via the odometer
map. Then the actions of Z and F3 on {0, 1}ω both preserve the ( 1

2 ,
1
2 ) Bernoulli measure

µ on 2ω; since the odometer is uniquely ergodic, we see that for both actions the closure
of the full group is equal to the set of all homeomorphisms which preserve µ. Yet there
cannot even exist a µ-preserving bijection h of X such that, for µ-almost all x, x ′ ∈ X ,
one has

(x RZx ′)⇔ (h(x)RF3 h(x ′)).

Indeed, the relation induced by the action of Z is hyperfinite, while the relation induced
by the action of F3 contains a subrelation which is induced by a free action of F2, so
it cannot be hyperfinite (see, for instance, [K2] for information on probability-measure-
preserving group actions and the properties we use here without going into detail). Since
a homeomorphism realizing an orbit equivalence between RZ and RF3 would have to
preserve µ, we see that while the closures of both full groups coincide, the associated
relations cannot be orbit equivalent. �

In view of this, the following question might be interesting.

Question 5.3. Let 01, 02 be two countable amenable groups acting minimally on a Cantor
space X . Assume that the closures of the corresponding full groups are isomorphic as
abstract groups. Must the two actions be orbit equivalent?
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If one knew that any minimal action of a countable amenable group is orbit equivalent to
a Z-action then the answer to the question above would be positive; the result of [GMPS]
mentioned at the end of the previous section implies that the above question has a positive
answer when 01, 02 are finitely generated free abelian groups.

We have already pointed out that it is unknown whether the full group of a minimal
homeomorphism ϕ is simple. This reduces to deciding whether the full group coincides
with its derived subgroup. Indeed, it is proved in [BM, Theorem 3.4] that any normal
subgroup of [ϕ] contains its derived subgroup; the same is true for Gϕ , as can be seen by
following the proof of [BM].

Unfortunately, it seems to be hard in general to decide which elements of [ϕ] are
products of commutators (though one might conjecture that every element has this
property; partial results in this direction can be found in [BM]). The use of Baire category
methods might make things simpler in the case of Gϕ , especially in view of the following
folklore result.

PROPOSITION 5.4. Let G be a Polish group; assume that G has a comeager conjugacy
class. Then every element of G is a commutator.

Proof. Assume that� is a comeager conjugacy class in G, and let g ∈ G. The intersection
g� ∩� is non-empty; picking an element g0 in this intersection, we see that there exists
k ∈ G such that gkg0k−1

= g0, that is, g = g0kg−1
0 k−1. �

It is thus of interest to understand when Gϕ has a comeager conjugacy class, even more
so because of the following observation.

PROPOSITION 5.5. Let ϕ be a minimal homeomorphism of a Cantor space X, and assume
that Gϕ has a comeager conjugacy class. Then Gϕ has the automatic continuity property,
that is, any homomorphism from Gϕ to a separable topological group is continuous.

Proof. The argument in [RS, Theorem 12] adapts straightforwardly. �

In the next section, we will discuss in more detail the problem of existence of comeager
conjugacy classes in Gϕ in the particular case where ϕ is uniquely ergodic, recovering in
particular a result of Akin that provides many examples of this phenomenon.

In the first version of this paper, we proved a weaker version of the result below, which
worked only in the case where n = 1 and ϕ is a uniquely ergodic homeomorphism (see the
next section); we are grateful to K. Medynets for pointing out to us the following stronger
result.

THEOREM 5.6. (Grigorchuk and Medynets [GM]) Let ϕ be a minimal homeomorphism
of a Cantor space X. Then {(g1, . . . , gn) : (g1, . . . , gn) generates a finite group} is dense
in [ϕ]n for all n.

Proof. Since this statement is not explicitly written down in [GM] (though it is very close
to Theorem 4.7 there), we describe the argument for the reader’s convenience. We simply
prove that the set of elements of finite order is dense in [ϕ]; the proof of the general case
is an easy consequence of this argument.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Mar 2016 IP address: 134.214.156.166

564 T. Ibarlucía and J. Melleray

We may assume, replacing ϕ by a minimal homeomorphism which is orbit equivalent
to it (which does not affect the full group), that the topological full group [ϕ] is dense in
[ϕ]. This fact is pointed out in [BK, Theorem 1.6], and follows from a combination of
[GW, Theorem 2.2] and [GPS2, Lemma 3.3]. Under this assumption, we only need to
prove that the set of elements of finite order is dense in [[ϕ]].

We fix γ ∈ [[ϕ]]. We let Di = {x : γ (x)= ϕi (x)} and Ek = {x : γ−1(x)= ϕk(x)}. The
sets Di form a clopen partition of X , as do the sets Ek ; we let jγ : X→ Z (kγ ) be the
continuous function defined by jγ (x)= j if and only if x ∈ D j (kγ (x)= k if and only if
x ∈ Ek). We also pick K such that D j = ∅ = E j for all | j |> K , fix a compatible distance
d on X for the remainder of the proof, and let δ > 0 be such that d(Di , D j ) > δ for all
non-empty Di 6= D j , and d(Ei , E j ) > δ for all non-empty Ei 6= E j .

Recall that a Kakutani–Rokhlin partition associated to ϕ is a clopen partition of X of
the form {ϕi (Bn) : 0≤ n ≤ N , 0≤ i ≤ hn − 1}. The base of the partition is B =

⋃N
n=0 Bn ,

while its top is T =
⋃N

n=0 ϕ
hn−1 Bn . Note that ϕ(T )= B. For all i , we set

Yi =

N⋃
n=0

ϕi (Bn) and Zi =

N⋃
n=0

ϕ−i (Bn).

Kakutani–Rokhlin partitions exist because ϕ is minimal; actually, one can use
minimality to ensure that the following conditions are satisfied (see, for instance, [GM]
for a discussion of these partitions and references):
(1) the functions jγ and kγ are constant on each atom of the partition;
(2) min{hn : 0≤ n ≤ N } ≥ 2K + 2;
(3) the diameter of each Yi and each Zi is less than δ for all i ∈ {0, . . . , K } (this can be

ensured because of the uniform continuity of ϕ and ϕ−1, and the fact that one can
construct Kakutani–Rokhlin partitions whose base has arbitrarily small diameter).

Fix such a partition. Note that the third condition ensures that jγ and kγ are constant
on each Yi , Zi (|i | ≤ K ), and the second condition guarantees that the sets (Yi )0≤i≤K ,
(Zi )1≤i≤K are pairwise disjoint. We now define P ∈ [[ϕ]] as follows. For all n, and all
i ∈ {0, . . . , hn−1}, let jγ (n, i) be the value of jγ on ϕi (Bn)= Bn,i .
• If 0≤ jγ (n, i)+ i ≤ hn−1, then P(x)= γ (x) for all x ∈ Bn,i .
• If jγ (n, i)+ i < 0, then necessarily i < K , so Bn,i = Yi , and since jγ is constant on

Yi one has γ (Yi )⊆ Zl for some 1≤ l ≤ K . The inclusion must be an equality since
kγ is constant on Zl . Then set P(x)= ϕ−i+hn−l(x) for all x ∈ Bn,i .

• If jγ (n, i)+ i ≥ hn , then one must similarly have Bn,i = Z j for some 1≤ j ≤ K ,
γ (Z j )= Yl for some 0≤ l < K , and one can set P(x)= ϕ−i+l(x) for all x ∈ Bn,i .

It is straightforward to check that P has finite order; also, the fact that the diameter of
each Yi , Zi for |i | ≤ K is small ensures that for all x one has both d(P(x), γ (x))≤ δ and
d(P−1(x), γ (x))≤ δ. Thus γ belongs to the closure of the set of elements of finite order,
which concludes the proof. �

Actually, as pointed out by K. Medynets, this argument shows that [ϕ] contains a dense
locally finite subgroup (the group of all elements which preserve a positive semi-orbit; see
the remarks in [GM, §5]). We will not need this fact so do not give any details.
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Even though we do not know whether Gϕ or [ϕ] are simple in general, we can
use Theorem 5.6 to prove that these groups do not have any non-trivial closed normal
subgroups.

THEOREM 5.7. Let ϕ be a minimal homeomorphism of a Cantor space X. Then Gϕ and
[ϕ] are topologically simple.

Proof. We show that the derived subgroup of [ϕ] is dense, which implies the simplicity
of both groups by the Bezuglyi–Medynets result recalled in the paragraph before
Proposition 5.4. Say that g ∈ [ϕ] is a p-cycle on a clopen set U if U is the support of
g, g p

= 1 and there exists a clopen A such that U = A t g(A) . . . t g p−1 A (this is the
same as saying that the g-orbit of every element of U has cardinality p, and every element
outside U is fixed by g). Theorem 5.6 implies that products of cycles are dense in [ϕ], so
it is enough for our purposes to show that p-cycles are products of commutators for any
integer p.

Let g be a p-cycle on a clopen U , with U =
⊔p−1

i=0 gi (A). Given a permutation σ
belonging to the permutation group Sp on p elements, we denote by gσ the element of [ϕ]
defined by setting gσ (x)= x for all x outside U and

for all i ∈ {0, . . . , p − 1}, for all x ∈ gi (A), gσ (x)= gσ(i)−i (x).

The map σ 7→ gσ is a homomorphism from Sp to [ϕ]. Since the commutator subgroup
of Sp is the alternating subgroup Ap, we thus see that whenever σ belongs to Ap, gσ is
a product of commutators. In particular, g has this property if p is odd. If p is even, let
τ be the transposition of Sp which exchanges 0 and 1. Then [BM, Corollary 4.8] tells us
that gτ is a product of 10 commutators in [ϕ]; since ggτ = gσ for some σ ∈ Ap, g is also
a product of commutators. �

It was pointed out by the referee that, since one can assume that [[ϕ]] is dense in [ϕ],
the density of the derived subgroup of [ϕ] directly follows from the fact that that [[ϕ]] is
contained in the derived subgroup of ϕ, a fact which is mentioned without proof in [BM,
p. 419].

Let us mention another reason why we think it might be interesting to further study the
properties of closures of full groups.

PROPOSITION 5.8. Let ϕ be a minimal homeomorphism of a Cantor space X. Then Gϕ is
an amenable Polish group.

Proof. By Theorem 5.6 there exists an increasing sequence of compact subgroups of Gϕ

whose union is dense in Gϕ (see [KR, Proposition 6.4]), which must then be amenable.
The result would also follow immediately from the stronger fact that Gϕ actually

contains a dense locally finite subgroup. �

This fact is particularly interesting in view of a question of Angel, Kechris and
Lyons [AKL, Question 15.1] asking whether, whenever an amenable Polish group has
a metrizable universal minimal flow, the universal minimal flow is uniquely ergodic. A
positive answer to the following problem would then show that the answer to the question
is negative.
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Question 5.9. Let ϕ be a minimal homeomorphism of a Cantor space X . Is the universal
minimal flow of Gϕ metrizable?

Remark 4. Proving that there exists one minimal homeomorphism ϕ which is not uniquely
ergodic yet has a metrizable universal minimal flow would be enough to answer negatively
the question posed by Angel, Kechris and Lyons. In the opposite direction, proving that the
universal minimal flows of these groups are not metrizable as soon as the homeomorphism
is not uniquely ergodic, and are metrizable otherwise, would point towards a positive
answer to their question.

At the moment, this seems out of reach: for instance, when ϕ is equal to the usual
binary odometer, Gϕ is just the set of all homeomorphisms of the Cantor space {0, 1}ω

which preserve the usual ( 1
2 ,

1
2 ) Bernoulli measure on {0, 1}ω. Identifying the universal

minimal flow of this group is already a very complicated problem, studied in [KST] where
a candidate (which is metrizable) is proposed. Thus it seems that the current state of the
art does not, for the moment, allow us to hope for an easy answer to our question.

6. Uniquely ergodic homeomorphisms and Fraı̈ssé theory
From now on, we focus on the case where ϕ is uniquely ergodic, that is, there is a unique
ϕ-invariant probability measure.

Definition 6.1. A Borel probability measure µ on a Cantor space X is said to be a good
measure if µ is atomless, has full support, and satisfies the following property: whenever
A, B are clopen subsets of X such that µ(A)≤ µ(B), there exists a clopen subset C of B
such that µ(C)= µ(A).

Note that in the definition above the fact that A, B, C are clopen is essential. Good
measures are relevant in our context because of the following fact.

THEOREM 6.2. ([A1]; Glasner and Weiss [GW]) Let µ be a probability measure on a
Cantor space X. There exists a minimal homeomorphism ϕ of X such that {µ} =Mϕ if,
and only if, µ is a good measure.

The fact that the goodness of µ is a necessary condition in the result above is due to
Glasner and Weiss (it follows directly from the result we recalled as Theorem 2.5); the fact
that it is sufficient is due to Akin.

It seems natural to ask the following question, which we only mention in passing.

Question 6.3. Can one give a similar characterization of compact, convex subsets K of
the set of probability measures on a Cantor space X for which there exists a minimal
homeomorphism ϕ of X such that K is the set of all ϕ-invariant measures?

The following invariant of good measures is very useful.

Definition 6.4. (Akin [A1]) Let µ be a good measure on a Cantor space X . Its clopen
value set is the set

V (µ)= {r ∈ [0, 1] : r = µ(A) for some clopen A ⊆ X}.
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A good measure µ on a Cantor space X is completely characterized by its clopen value
set, in the sense that for any two good measures µ, ν on X with the same clopen value
set there must exist a homeomorphism g of X such that g∗µ= ν (see [A1, Theorem 2.9];
we discuss a different proof below). If µ is a good measure, then V (µ) is the intersection
of a countable subgroup of (R,+) and [0, 1], contains 1, and is dense in the interval;
conversely, it is not hard to see that any such set is the clopen value set of some good
measure µ. The density condition corresponds to the fact that µ is atomless, and is
equivalent (since 1 ∈ V ) to saying that V is not contained in (1/p)Z for any integer p.

Definition 6.5. Given a good measure µ on a Cantor space X , we follow [A1] and denote
by Hµ the set of all homeomorphisms of X which preserve µ. For a countable V ⊂ [0, 1],
we denote by 〈V 〉 the intersection of the subroup of (R,+) generated by V ∪ {1} with
[0, 1]; we say that V is group-like when V is not contained in (1/p)Z for any integer p
and V = 〈V 〉. In that case, we denote by µV the good measure whose clopen value set is
equal to V .

Of course, µV above is only defined up to isomorphism; since we focus on
isomorphism-invariant properties we allow ourselves this small abuse of terminology.

We would like to understand when there exists a comeager conjugacy class in Hµ.
Akin [A1, Theorem 4.17] proved that this holds true whenever V (µ)+ Z is a Q-vector
subspace of R, or equivalently whenever any clopen subset can be partitioned into m
clopen subsets of equal measure for any integer m. One can check that this also holds true,
for instance, when µ is a Bernoulli measure (this is explicitly pointed out in [KR]), and
it was our hope that this property would be satisfied by all good measures. Unfortunately,
such is not the case, as we will see shortly; since we approach this problem via techniques
developed by Kechris and Rosendal [KR], we quickly recall the framework for their
results.

A signature L is a set {{( fi , ni )}i∈I , {(R j , mj )} j∈J , {ck}k∈K } where each fi is a
function symbol of arity ni , each R j is a relation symbol of arity mj , and each ck is a
constant symbol.

Given a signature L , an L-structure M consists of a set M along with a family
{{( f Mi )}i∈I , {RM

j } j∈J , {cMk }k∈K } where each f Mi is a function from Mki to M , each
RM

j is a subset of Mmj , and each cMk is an element of M . In our context, one might
for instance consider the signature containing constant symbols 0 and 1, binary functional
symbols ∧ and ∨, and consider the class of structures in that signature which are boolean
algebras with minimal element (the empty set) corresponding to the constant 0, and
maximal element (the whole set) corresponding to the constant 1. It might also simplify
matters to add a unary function symbol standing for complementation. Here, we are not
concerned merely with boolean algebras, but with probability algebras. One way to fit
those into our framework is to first fix a set V ⊆ [0, 1] (the set of values allowed for
the probability measure), and add a unary predicate µv for each v ∈ V . Then, one can
naturally consider the class of probability algebras with measure taking values in V as a
class of structures in this signature LV .

There are natural notions of embedding/isomorphism of L-structures. Assume that we
have fixed a countable signature L (i.e. each set I , J , K above is at most countable), and
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that K is a class of finite L-structures. Then one says that K is a Fraı̈ssé class if it satisfies
the following four conditions:
(1) K contains only countably many structures up to isomorphism, and contains

structures of arbitrarily large finite cardinality;
(2) K is hereditary: if A ∈K and B embeds in K, then B ∈K;
(3) K satisfies the joint embedding property (JEP): any two elements of K embed in a

common element of K;
(4) K satisfies the amalgamation property (AP): given A, B, C ∈K and embeddings i :

A→ B, j : A→ C , there exist D ∈K and embeddings β : B→ D and γ : C→ D
such that β ◦ i = γ ◦ j .

The point is that, given a Fraı̈ssé class K, there exists a unique (up to isomorphism)
L-structure K whose age is K and which is homogeneous. Here, the age of a structure
is the class of finite L-structures which embed in it, and a structure K is homogeneous if
any isomorphism between finite substructures of K extends to an automorphism of K.
Conversely, if K is a countable homogeneous L-structure whose finitely generated
substructures are finite, then its age is a Fraı̈ssé class.

For instance, the class of finite boolean algebras is a Fraı̈ssé class and its limit is the
unique countable atomless Boolean algebra, whose Stone space is the Cantor space—so
the automorphism group of the limit is just the homeomorphism group of the Cantor space
in another guise. Note that the automorphism group of any countable structure K may be
endowed with its permutation group topology, for which a basis of neighborhoods of the
neutral element is given by pointwise stabilizers of finite substructures.

Let us fix a good measure µ on a Cantor space X , set V = V (µ), and consider
the probability algebra (Clop(X), µ) made up of all clopen subsets of X endowed
with the measure µ, in the signature LV discussed above. Then it follows from
Theorems 6.2 and 2.5 that this is a homogeneous structure: any measure-preserving
isomorphism between two finite clopen subalgebras of X is induced by a measure-
preserving homeomorphism of X , that is, an automorphism of the boolean algebra
Clop(X) which preserves the measure µ. Also, an easy induction on the cardinality of
finite subalgebras of (Clop(X), µ) shows that its age consists of the finite probability
algebras whose measure takes values in V . Hence this is a Fraı̈ssé class; note that this
implies that two good measures µ1, µ2 such that V (µ1)= V (µ2) must be isomorphic, by
the uniqueness of the Fraı̈ssé limit (this was first proved by Akin [A1]).

We can now return to the question of existence of dense/comeager conjugacy classes
in Hµ, when µ is a good measure. Assume again that K is a Fraı̈ssé class in some
countable signature L , let K be its Fraı̈ssé limit and let K1 denote the class of structures
of the form (A, ϕ), where A belongs to K and ϕ is a partial automorphism of A,
that is, an isomorphism from a substructure of A onto another substructure of A.
An embedding between two such structures (A, ϕ) and (B, ψ) is an embedding α of A
into B such that ψ ◦ α extends α ◦ ϕ. Then the existence of a dense conjugacy class in
Aut(K) is equivalent to saying that the class K1 satisfies the joint embedding property (see
[KR, Theorem 2.1]).

The existence of a comeager conjugacy class is a little harder to state. Retaining the
notation above, say that a class of structures K satisfies the weak amalgamation property if,
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for any A ∈K, there exist B ∈K and an embedding i : A→ B such that, for any C, D ∈K
and any embeddings r : B→ C , s : B→ D, there exist E ∈K and embeddings γ : C→ E
and δ : D→ E such that γ ◦ r ◦ i = δ ◦ s ◦ i . Then [KR, Theorem 3.4] states that there
exists a comeager conjugacy class in Aut(K) if and only if K1 satisfies both (JEP) and
(WAP).

We now know what combinatorial properties to study when looking at the
automorphism groups of good measures; fix a good measure µ and consider the
corresponding Fraı̈ssé class Kµ, which is made up of all finite probability algebras whose
measure takes its values inside V (µ). Theorem 5.6 provides a good starting point: indeed,
it shows that any element of Kµ1 can be embedded in an element of the form (A, ϕ), where
ϕ is a global automorphism of A. We denote this class by Kµaut.

It follows from Theorem 5.6 that Kµaut is cofinal in Kµ1 . Hence, in order to understand
when Kµ1 satisfies (JEP), we only need to consider automorphisms of finite algebras.
Explicitly, we now see that Hµ has a dense conjugacy class if and only if the following
condition is satisfied: whenever A, B are finite subalgebras of Clop(X), and a, b are
automorphisms of (A, µ), (B, µ) respectively, there exist a finite subalgebra C of Clop(X)
and an automorphism c of (C, µ) such that there existµ-preserving embeddings α :A→ C
and β : B→ C satisfying c(α(A))= α(a(A)) for all A ∈A, and c(β(B))= β(b(B)) for
all B ∈ B.

Unfortunately, this property does not always hold. Indeed, assume thatµ satisfies (JEP),
and that there exists A ∈ Clop(X) such that µ(A)= 1/n for some integer n. Then there
exists an element a ∈ Hµ such that X is the disjoint union of A, . . . , an−1(A). Now let r
be any element of V (µ), B a clopen subset of X such that µ(B)= r , and consider:
• the algebra A generated by A, . . . , an−1(A), with the automorphism a;
• the algebra B made up of B and its complement, with the identity automorphism b.
Assume that one can jointly embed (A, a) and (B, b) in (C, c); identify A, B with
the subalgebras of C associated with these embeddings. Then B = B ∩

⊔n−1
i=0 ci (A)=⊔n−1

i=0 ci (B ∩ A), so B is cut into n clopen subsets of equal measure. This means that
r/n must belong to V (µ). Hence, the joint embedding property fails, for instance, when
V = 〈 12 , 1/π〉.

Analysing the above example, one can extract a combinatorial condition on V that is
equivalent to the existence of a dense conjugacy class in HµV .

PROPOSITION 6.6. Let V be a group-like subset of [0, 1]. Then there is a dense conjugacy
class in HµV if, and only if, V satisfies the following condition: whenever ai , b j ∈ V and
ni , mj ∈ N are such that

∑p
i=1 ni ai = 1=

∑q
j=1 mj b j , there exist ci, j ∈ V such that

for all j, mj b j =

p∑
i=1

lcm(ni , mj )ci, j and for all i, ni ai =

q∑
j=1

lcm(ni , mj )ci, j .

This holds true in particular when V + Z is a Q-vector subspace of R, and when V + Z
is a subring of R.

As we have already mentioned, Akin [A1] actually proved that Hµ has a comeager
conjugacy class when V (µ)+ Z is a Q-vector subspace of R, a fact that we will recover
below.
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Proof of Proposition 6.6. To simplify the notation below we sometimes do not mention
the measure; in particular, all automorphisms are to be understood as preserving µ.

Assume that the joint embedding property for partial automorphisms holds, and
consider (ai , ni )1≤i≤p, (b j , mj )1≤ j≤q as above. Then one can consider a finite algebra
A with clopen atoms Ai,k for k ∈ {0, . . . , ni − 1} such that each Ai,k has measure ai , and
an automorphism a of A such that a(Ai,k)= Ai,k+1 for all i, k (where addition is to be
understood modulo ni ); similarly, one can consider a finite algebra B with clopen atoms
Bj,k (k ∈ {0, . . . , mj − 1}) and the corresponding automorphism b of B. For all i , we let
Ai = ∪Ai,k and Bj = ∪Bj,k .

Then we pick (C, c) such that (A, a) and (B, b) can be embedded in (C, c), where c
is an automorphism of the finite algebra C, and we identify them with the corresponding
subalgebras of C. If Ai ∩ Bj is non-empty for some i, j , then it is a c-invariant clopen
set. Any atom of C contained in some Ai,k ∩ Bj,l must have an orbit whose cardinality is a
multiple of lcm(ni , mj ), so ci, j = (1/lcm(ni , mj ))µ(Ai ∩ Bj ) belongs to V . Then, for all
i ,

ni ai = µ(Ai )=

q∑
j=1

µ(Ai ∩ Bj )=

q∑
j=1

ci, j lcm(ni , mj ).

The same reasoning holds for mj b j .
This proves one implication; to prove the converse, let us first note that, given a clopen

U and two cycles a, b on U of orders n, m respectively and such that (1/lcm(n, m))µ(U )
belongs to V , there exists a cycle on U of order N = lcm(n, m) in which both a and b
embed. Such a cycle is obtained by cutting U into N disjoint pieces Ci (0≤ i ≤ N − 1)
of equal measure, and setting c(Ci )= Ci+1 (modulo N ). Then let N = nr = ms; letting
A0, . . . , An−1 denote the atoms contained in U of the algebra on which a is defined, one
obtains the desired embedding by identifying each Ai with

⊔r−1
k=0 Cnk+i , and each Bj with⊔s−1

k=0 Cmk+ j .
Now let α, β in HµV be such that X =

⊔p
i=1 Ai , where each Ai is clopen and α is a

product of cycles αi of order ni on Ai , and X =
⊔q

j=1 Bj , where each Bj is clopen and
β is a product of cycles β j of order mj on Bj . It is enough to prove that α, β embed in a
common element of HµV . Let ni ai = µ(Ai ) and mj b j = µ(Bj ), and apply our assumption
on V to get ci, j as in the statement of the lemma. Let I denote the set of all (i, j) such
that ci, j 6= 0; we may find a finite subalgebra of Clop(X) whose atoms Ck

i, j ((i, j) ∈ I ,
1≤ k ≤ lcm(ni , mj )) are of measure ci, j . For each (i, j) ∈ I , set

Di, j =

lcm(ni ,mj )⊔
k=1

Ck
i, j .

We saw that there exists a cycle δi, j on Di, j , of order lcm(ni , mj ), in which a cycle αi, j

on Di, j of order ni and a cycle βi, j on Di, j of order mj both embed. Let δ be the product
of all δi, j ; α embeds in δ as the product of all αi, j , and β embeds in δ as the product of
all βi, j .

To see that the property under discussion holds true when V + Z is a subring of R,
simply note that in that case ai b j belongs to V ; thus ci, j = ai b j (ni mj/lcm(ni , mj ))=

ai b j gcd(ni , mj ) works.
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When V + Z is a Q-vector subspace of R, which is equivalent to saying that (a/n) ∈ V
for any positive integer n and any a ∈ V , the property is also satisfied. We skip the proof
since we will show a stronger property below. �

The above criterion is probably of minimal practical interest, since it appears to be fairly
hard to check (certainly it does not help much when tackling the case where V + Z is a
Q-vector subspace of R).

Definition 6.7. Following Akin [A1], we say that a group-like subset V ⊆ [0, 1] is Q-like
if V + Z is a Q-vector subspace of R; this is equivalent to saying that V is group-like and
(1/n)V ⊆ V for any positive integer n.

PROPOSITION 6.8. If V is Q-like, then KµV
aut satisfies the amalgamation property. (The

converse is also true.) Hence HµV has a comeager conjugacy class in that case.

Proof. Suppose that (A, ϕ) embeds in (B, ψ) and in (C, θ). We construct the boolean
amalgam (B ⊗A C, ψ ⊗ θ) of (B, ψ) and (C, θ) over (A, ϕ) in the standard way (see,
for example, [KST]), and only need to define the measures. We give an argument in the
manner of the one contained in Theorem 2.1 of [KST].

Fix an atom a ∈ A, and list the atoms of B and C contained in a by {bk
i }

k<n
i<nk

and

{cl
j }

l<m
j<ml

respectively, where bk
i and bk′

i ′ are in the same ψ-orbit if and only if k = k′, and
analogously for the cl

j . We want to define the values xkl
i j = µ(b

k
i ⊗ cl

j ). Then we would
translate these values in the obvious manner to the products of the atoms of B and C
contained in the ϕ-translates of a; finally, we would proceed analogously for the other
orbits of (A, ϕ).

Other than being in V , the values xkl
i j have to satisfy:

0≤ xkl
i j ,

xkl
i j = xkl

i ′ j ′ ,∑
ki

xkl
i j = µ(c

l
j ),

∑
l j

xkl
i j = µ(b

k
i ).

Denoting xkl
= xkl

i j , we can reformulate the conditions as:∑
k

nkml xkl
= mlµ(cl

0),
∑

l

nkml xkl
= nkµ(bk

0).

Considered as a system in the variables ykl
= nkml xkl , we can find a solution in R,

namely ykl
= nkml(µ(bk

0)µ(c
l
0)/µ(a)). Since V is group-like and dense, there must also

be solutions ykl in V . Since it is also Q-like, we can take xkl
= (ykl/nkml) and we are

done. �

The amalgamation property for Kµaut is stronger than the existence of a comeager
conjugacy class in Hµ; for instance, if V (µ) is the set of dyadic numbers, then it
follows from [KR, discussion after the statement of Theorem 6.5] that Hµ has a comeager
conjugacy class, but it is easy to see that Kµaut does not have the amalgamation property
in that case. It does, however, admit a cofinal class which satisfies the amalgamation
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property, which is sufficient to obtain (WAP) (that class is made up of finite subalgebras
all of whose atoms have the same measure). A priori, the cofinal amalgamation property
for Kµaut is itself stronger than (WAP); yet we do not know of an example of measure for
which Kµ1 has (WAP) but Kµaut does not have the cofinal amalgamation property.
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